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Abstract—The strongly implicit procedure is used to solve non-linear elliptical two-dimensional heat

conduction in radiating plates. A uniform heat flux is applied at one end of the plate which dissipates heat

by radiation from one end into a vacuum at 0 K and into an ambient at temperature T, from the other.
The results are presented with reference to four non-dimensional parameters.

1. INTRODUCTION

ErFICIENT heat removal systems are required for the
safe and satisfactory operation of spacecraft. In
certain cases the surface area of the heat dissipating
electronic equipment may not be sufficient to transfer
the heat. In such circumstances they are mounted on
high conductivity plates to enhance the heat trans-
fer. Cooling devices normally termed as radiators,
doublers are used. The accurate prediction of the ther-
mal performance of these is essential for compact
and efficient design. However, the analysis of such
contrivances is conventionally based upon several
simplifying assumptions, in particular, that the heat
flow is unidirectional. Many investigators have
reported the one-dimensional heat flow analyses of
radiators [1-5]. In practice the configuration of the
plate used and the heat footprint location make a
two-dimensional heat flow study mandatory. Such
studies, however, are very scarce in the literature.

A two-dimensional study of fin tube radiators is
reported in refs. {6, 7]. Sikka and Igbal [8] have given
a series solution the coefficients of which are deter-
mined by the least squares fit method, to analyse the
two-dimensional heat flow in a circular radiating fin.
Both convective and radiative heat dissipations with-
out incident radiation were considered. A variational
formulation for analysing the two-dimensional tem-
perature distribution in a rectangular solid receiving
radiant heat flux on one face and emanating radiant
energy to the atmosphere at 0 K is given by Igbal
and Aggarwala [9]. Moszynski and Champaneria [10]
have given a semi-iterative solution procedure for the
determination of the two-dimensional temperature
distribution in radiating fins. No generation of heat
within is considered in the above analyses. More
recently Bobco and Starkovs [11] have developed
closed form solutions to radiating plates comparable
to thermal doublers. They simplified the problem by
linearizing the radiation term. Such an approximation
is applicable only where the maximum doubler tem-
perature is not significantly higher than the immediate
sink temperature.

In summary, the study of two-dimensional radi-
ating plates is scarce. The few results which are avail-
able in the open literature are far from complete in as
much as the methods still involve fairly bold assump-
tions. In this paper, numerical solutions are developed
for two-dimensional radiating plates receiving a uni-
form heat flux at one surface and sun load at the other
and radiating both to ambient and vacuum space con-
ditions simultaneously.

2. FORMULATION

A schematic representation of the system con-
sidered is shown in Fig. 1. The theoretical rep-
resentation of this is developed on the basis of the
following assumptions:

(1) the heat flow is steady;

(2) the plate material is isotropic;

(3) the plate radiates from one end to a vacuum
space which is at a constant arbitrary temperature of
0 K, and to the ambient at a uniform temperature 7;
from the other;

(4) all radiating surfaces are grey and diffuse ;

(5) the heat flux applied over any footprint area is
uniform and the contact resistance between the heat
application zone and the plate is negligible ;

(6) the plate receives sun load on the surface facing
the vacuum space

(7) the thickness of the plate is very small compared
to other dimensions.

For two-dimensional heat conduction the energy
and boundary condition equations are as follows.

Heat application zone

52T 52T K3 q K2T4
ottt ke -0 (1@

Remaining zone
sz ’T K, K,

KQT“
5 ke ke

(T*=TH)— =2

P 0 (1b)
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source term
temperature [K]

S;

oS

dimensionless temperature, 7/T,
emissivity ratio, g/¢,

X, Y dimensionless Cartesian coordinates,
equation (5)

X, y Cartesian coordinates [m}

x, reference length [m].

Superscript
* guess value.

NOMENCLATURE
A  matrix coefficient Greek symbols
4 auxiliary matrix a  solar absorptivity
a,...,e, coefficients of difference equation é thickness of the plate [m]
B dimensionless breadth, b/x, € infra-red emissivity
b breadth of the plate [m] 0 solar angle
I  solar constant [Wm™? ¢ dimensionless profile factor, K,x2T2/kd
K,, K,, K; coeflicients, equation (1) 6  Stefan-Boltzmann constant [Wm~ 2K 9|
k  thermal conductivity [Wm™'K ] ¢  dimensionless heat flux, gx2/kéT,
L  dimensionless length, //x, Y  dimensionless environment factor,
l length of the plate [m] K,/K,T?
g  heat flux [Wm™7 @, relaxation parameter, equation (11)
S source vector, equation (7) @, relaxation parameter, equation (9).
T
T, reference temperature [K]
U
w

Subscripts
i inside
o outside

P present.

Uniform heat flux, g

Heat footprint

@r0s,, to ambient at T

G as,0 t0 vacuum space at OK

AllL edges are insulated

Fi1G. 1. Schematic diagram of the radiating plate.

where
K, =o0¢,K, =0e,and K; = I oc sin 8.

Boundary conditions

aAT:() atx =0and 1 (2a)
0x
T

=0 aty=_0andb. (2b)

oy

The non-linear elliptic problem defined by equations
(1) and (2), is now given in dimensionless form.

Heat application zone
U o*U

—_ —— - 4 —_— =
X7 + 6Y2+d> EU—y) =0. (3a)
Remaining zone
o*U  o*U 4 4
b*ﬁ'f‘ ar? =LA+ WU— WU —y]=0. (3b)
Boundary conditions
ou
5{:0 atX=0and L (4a)
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U
arY=O atY=0and B (4b)
where
T X y
U_i’ X—;O, Y—x—0
2 273
_ qXo __K2xoTo _ K3
é k0T’ ¢ s "//’KzT;,‘ (5)
and
K,
W—E.

3. NUMERICAL SOLUTION

The solution to the problem described by equations
(3) and (4) is susceptible to treatment by various
numerical techniques. The boundary integral equa-
tion and series truncation method is used by some
investigators [12]. An implicit finite difference scheme
is used in the present investigation to write equation
(3) in the well-known five-point difference equation
as

alj Ul,]— 1 +bi./ Ui-— l.]+cl/ Ui.j+dlj Ui+ 1,j
+eijUi,,+1 =S8, ©

The difference equation (6) is expressed in matrix form
as

AU=S§ 7

where A4 represents ¢, toe,,, U,all U,’s and S, all 5;;’s.

Due to the limitations of the normally used Jacobi
iterative, Gauss—Seidel iterative, successive over relax-
ation and the ADI methods in solving the large non-
linear set of equations obtained here the strongly
implicit procedure of Stone [13] is used in the present
investigation. The principal advantage is the faster
convergence rate of this compared to the other pre-
viously mentioned methods.

3.1. The strongly implicit procedure (SIP)

A general iterative formula for equation (6) is
obtained by adding an auxiliary term A to each side
of equation (7) and setting the iteration number to U
as

[A+ANUY™" = [4{U}"+{S} ®

where # is the number of iterations and the form of
[A] is such that |[4]] « |[4]| and the decomposition
of [4+ A] into a lower and an upper triangular matrix
product involves much less computation than the
direct decomposition of [4]. Factorization of [4+ A]
into [L]+[U] or [L]+[B], where [L], [U] and [B]
are respectively lower, upper and diagonal matrix,
reduces the method to point Jacobi iterative and
Gauss—Seidel schemes, respectively. In the SIP
method however, [4+A4] is factorized as [L]‘[U].
Since the right-hand side of equation (8) involves the
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unknown solution vector {U}, the following iteration
scheme of Stone [13] is used :

[A+A) U} = [A+ANU} ~o,(41{U}" ~ {S)
®

where w, is the relaxation parameter.

3.2. Source term linearization

To avoid the steady drift or oscillation with increas-
ing amplitude of the computed ‘U’ values the source
term is linearized by splitting .S as follows [14] :

5= s+ <:—(s])*(up— U (10)

where the superscript denotes the guess or previous
iteration value. Also to accelerate the convergence
rate a relaxation parameter is used for the source and
the coefficient ¢;; during the recalculation. Source term
relaxation for example is written as

5 = @,8;,+(1—w,)sk. (1)
The convergence criterion set for the U value is less
than or equal to 10~ %, The linearized source equations
are solved repeatedly in an outer iterative cycle and
the SIP method is evaluated in an inner cycle.

3.3. Grid generation and treating irregular boundaries

The given irregular shaped plate is approximated
to a polygon and is considered in a positive coordinate
system. A suitable rectangular grid is then super-
imposed over the polygon. By making use of the direc-
tion cosines of the directed line segments from the
grid points they are designated as external, internal
and boundary nodes. Depending on the type of nodes
they are represented by a number. Based on the above
procedure the number of grid points of the five point
molecule difference representation which are outside
the domain under consideration is determined. The
method proposed by Fox as in ref. [15] is used to
handle the derivative normal to the irregular bound-
aries. A computer program is developed for the auto-
matic generation of the grid and the details are pre-
sented elsewhere [16].

4. RESULTS AND DISCUSSION

Two-dimensional temperature distribution in radi-
ating plates is computed for different values of the
relaxation parameters w, and o,. The optimum values
are 0.95 and 0.1, respectively. The consistency of the
computer program developed is confirmed by check-
ing the independency of the converged solution for
different values of the initial guesses of temperature,
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Fi1G. 2. Effects of heat flux parameter ¢ on temperature.

the relaxation factors, the reference temperature and
coordinate axes values. The deviation in temperature
value at the centre and the corner of a square plate
radiating to space is found to be less than 0.25% when
the grid size is quadrupled from 8 x 8 to 32x 32. In
most of the computations however, the minimum
number of divisions considered along any of the axes
is 16.

Figure 2 shows the effect of the normalized heat
flux parameter ¢ on the variation of temperature with
distance, where U, corresponds to the normalized
centre temperature of the square radiating plate con-
sidered. The range of ¢ considered is 0.1-100. The
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FiG. 3. Effects of emissivity factor £ on temperature.
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FiG. 4. Effects of environment parameter ¥ on temperature.

temperature gradient and centre temperature
increases with heat flux. Though the term k4 appears
both in ¢ and ¢, the figure shows the possible trend
in the temperature distribution for changes in the
material property. The term £ is sometimes considered
as the radiation Biot number. However, because of
the appearance of terms &, 6 and T, in both ¢ and ¢,
it can be treated as an emissivity factor of the radiating
surface. The temperature profile flattens and the ori-
gin temperature reduces with an increase in ¢ (Fig. 3).

The environment parameter  is the normalized sun
load falling on the plate. At = 0 no sun load falls
on the plate. The overall effect of the variation of y
on normalized temperature is small as shown in Fig.
4. The radiating plate is interacting with vacuum space
and ambient conditions on either sides excepting the
heat footprint zone, where a uniform heat flux is
applied. For a given area of the plate and heat load,
the average temperature level of the plate can be
reduced by effectively radiating from either sides of
the plate. A measure of this is expressed as the emis-
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FiG. 5. Effects of emissivity ratio W on temperature.
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a=02, € =¢,=08,83=2mm

Q=850W, 7 =300K, 7 =014wm-2 @ 235°
Heat footprint = 100 ¢cm2 0

Numerals designate temperature in K

Atl dimensions in cm
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FiG. 6. Isotherms in rectangular plate (effects of aspect ratio).

sivity ratio W, and its effect on the temperature dis-
tribution is shown in Fig. 5. At W =0, no heat is
radiated to the ambient conditions. The mean tem-
perature of the plate increases with a reduction in W.

Figure 6 depicts the isotherms in rectangular plates
of equal area and different aspect ratios. A square
heat footprint at the centre is considered in all the
cases. The isotherms are circular except at the corners

for a square plate. With the increase in the aspect
ratio, the two-dimensional effect of temperature is
predominant near the heat footprint area only. Also
the maximum temperature at the origin increases with
aspect ratio. The variation in the maximum tem-
perature attained with change in footprint location is
shown in Fig. 7. For a given heat load and radiating
conditions a doubly symmetric location of the foot-
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FiG. 7. Isotherms in rectangular plate (effects of heat footprint location).
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4.1. Design of radiating plates

One of the primary objectives of thermal design is
to maintain the temperature of the heat dissipating
component at or below a specified value. If the shape
of the plate and the heat footprint location is fixed,
the above objective can be achieved by varying the
thickness of the plate. This is generally done by a trial
ana error method. In the present investigation a one-
dimensional search method is used for a quick esti-
mation [16]. Figure 8 shows the thickness required for
different aspect ratios. An increase in the maximum
temperature attained with aspect ratio necessitates the
increase in the thickness to contain the maximum
temperature to a desired value. For values of aspect
ratio greater than 6, the thickness required increases
almost linearly.

Figure 9 shows two grid sizes used and the iso-
therms in an irregular hexagonal radiating plate witha
centrally located square footprint area. The isotherms
are circular at the centre and elongate to an elliptical
shape in the body of the plate. A two-dimensional
effect is seen throughout the plate area. The closer
isotherms around the footprint area showing a larger

[

& = €,=08
T, = 300K
3 =2.86mm
@ =70W

Numerals designate temperature in K
ALl dimensions in cm

F1G. 9. Isotherms in an irregular hexagonal plate.

print and the plate will attain the lowest temperature
at the origin. From the point of view of temperature
constraints, as experienced in heat dissipation in elec-
tronic devices, the doubly symmetric configuration is
best suited whenever possible.

temperature gradient are further apart near the edge
showing a larger temperature range. The percentage
difference in the temperature values at locations A, B
and C on the plate for the two grid sizes of 21 x21
and 11 x 11 are 0.27, 0.87 and 0.45, respectively.
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F1G. 10. Isotherms in an irregular plate.

In practice it may be required to use an irregular
shaped plate (from the viewpoint of mass mini-
mization) with more than one heat footprint. Figure
10 shows the isotherms in such a plate of size 5550
cm? The two heat footprint areas and load are 200,
75 cm? and 18, 150 W, respectively. The absorptivity,
emissivity ratio of the external side facing the vacuum
at 0 K is 0.2/0.8. The other side of the plate has an
emissivity of 0.8 and radiates to an ambient condition
at 300 K. As can be expected the isotherms which are
closer near the high heat flux zone, spread out in the
other region. Only one hot spot is observed due to the
large difference in the applied heat flux values.

5. CONCLUDING REMARKS

The mathematical model presented in this paper
leads to a better understanding of two-dimensional
heat transfer in radiating plates. The effects of the
non-dimensional parameters namely, the heat flux
parameter, profile number, environmental parameter,
emissivity ratio and aspect ratio upon the temper-
ature distribution are studied.
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ANALYSE DU TRANSFERT THERMIQUE BIDIMENSIONNEL DES PLAQUES
RADIANTES

Résumé—On utilise la procédure fortement implicite pour traiter la conduction de chaleur bidimensionnelle,

non linéaire, elliptique dans des plaques radiantes. Un flux thermique uniforme est imposé a une face de

la plaque qui dissipe la chaleur par rayonnement dans le vide 4 0 K et dans une ambiance 4 la température
T.. Les résultats sont présentés a P'aide de quatre paramétres adimensionnels.

UNTERSUCHUNG DES ZWEIDIMENSIONALEN WARMETRANSPORTES IN EINER
WARMEABSTRAHLENDEN PLATTE

Zusammenfassung—Ein implizites Verfahren wird zur Berechnung der nicht-linearen elliptischen zwei-

dimensionalen Wirmeleitung in einer wirmeabstrahlenden Platte verwendet. Der Platte wird ein gleich-

miBiger Wirmestrom aufgeprigt. Die Wirme wird auf der einen Scite der Platte in einen evakuierten

Raum von 0 K abgestrahlt, auf der anderen Seite in eine Umgebung mit einer Temperatur T,. Die Ergebnisse
werden in Form von vier dimensionslosen Parametern dargestelit.

JBYMEPHbBII AHAJTU3 TEIJIOTIEPEHOCA M3JIVUYAIOIIHUX TUIACTHH

Annoramms—/I1s pewieHus HeJMHEHHON UIMNTHYECKOR ABYMEPHOH 3aJaud TEIUTONPOBONHOCTH AMA

HATYYAOLIMX UTACTHH MCNIONL3YETCA HesBHEIH MeTon, OMHOPOIHbIA TEIIOBOH NOTOK MOJACTCS HA OJHH

KOHel| IUIACTHHBL, KOTOPAA PACCEMBAET TEIUIO HINYYEHHEM C OJHOTO KOHIA B Bakyyme mpu T=0K m ¢

IPYroro KOHIA B OKPYXAIOUIyIo cpeay npH Temnepatype 7;. PesynsraTsl npeicTaBneHs! C NOMOLIBIO
yeThIpeXx 6e3pasMEPHBIX NapaMeTpoB.



