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Abstract-The strongly implicit procedure is used to solve non-linear elliptical two-dimensional heat 
conduction in radiating plates. A uniform heat flux is applied at one end of the plate which dissipates heat 
by radiation from one end into a vacuum at 0 K and into an ambient at temperature T, from the other. 

The results are presented with reference to four non-dimensional parameters. 

1. INTRODUCTION 

EFFICIENT heat removal systems are required for the 
safe and satisfactory operation of spacecraft. In 
certain cases the surface area of the heat dissipating 
electronic equipment may not be sufficient to transfer 
the heat. In such circumstances they are mounted on 
high conductivity plates to enhance the heat trans- 
fer. Cooling devices normally termed as radiators, 
doublers are used. The accurate prediction of the ther- 
mal performance of these is essential for compact 
and efficient design. However, the analysis of such 
contrivances is conventionally based upon several 
simplifying assumptions, in particular, that the heat 
flow is unidirectional. Many investigators have 
reported the one-dimensional heat flow analyses of 
radiators [l--S]. In practice the configuration of the 
plate used and the heat footprint location make a 
two-dimensional heat flow study mandatory. Such 
studies, however, are very scarce in the literature. 

A two-dimensional study of fin tube radiators is 
reported in refs. [6, 71. Sikka and Iqbal [S] have given 
a series solution the coefficients of which are deter- 
mined by the least squares fit method, to analyse the 
two-dimensional heat flow in a circular radiating fin. 
Both convective and radiative heat dissipations with- 
out incident radiation were considered. A variational 
formulation for analysing the two-dimensional tem- 
perature distribution in a rectangular solid receiving 
radiant heat flux on one face and emanating radiant 
energy to the atmosphere at 0 K is given by Iqbal 
and Aggarwala [9]. Moszynski and Champaneria [lo] 
have given a semi-iterative solution procedure for the 
determination of the two-dimensional temperature 
distribution in radiating fins. No generation of heat 
within is considered in the above analyses. More 
recently Bobco and Starkovs [I l] have developed 
closed form solutions to radiating plates comparable 
to thermal doublers. They simplified the problem by 
linearizing the radiation term. Such an approximation 
is applicable only where the maximum doubler tem- 
perature is not significantly higher than the immediate 
sink temperature. 

In summary, the study of two-dimensional radi- 
ating plates is scarce. The few results which are avail- 
able in the open literature are far from complete in as 
much as the methods still involve fairly bold assump- 
tions. In this paper, numerical solutions are developed 
for two-dimensional radiating plates receiving a uni- 
form heat flux at one surface and sun load at the other 
and radiating both to ambient and vacuum space con- 
ditions simultaneously. 

2. FORMULATION 

A schematic representation of the system con- 
sidered is shown in Fig. 1. The theoretical rep- 
resentation of this is developed on the basis of the 
following assumptions : 

(1) the heat flow is steady ; 
(2) the plate material is isotropic; 
(3) the plate radiates from one end to a vacuum 

space which is at a constant arbitrary temperature of 
0 K, and to the ambient at a uniform temperature z 
from the other ; 

(4) all radiating surfaces are grey and diffuse ; 
(5) the heat flux applied over any footprint area is 

uniform and the contact resistance between the heat 
application zone and the plate is negligible ; 

(6) the plate receives sun load on the surface facing 
the vacuum space 

(7) the thickness of the plate is very small compared 
to other dimensions. 

For two-dimensional heat conduction the energy 
and boundary condition equations are as follows. 

Heat application zone 

Remaining zone 

I767 
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NOMENCLATURE 

A matrix coefficient 
A” auxiliary matrix 
nij, . . , e,, coefficients of difference equation 

B dimensionless breadth, b/x, 
b breadth of the plate [m] 
Z solar constant [Wm-‘1 
K,, K2, K, coefficients, equation (1) 
k thermal conductivity [W m- ’ K- ‘1 
L dimensionless length, l/x, 
I length of the plate [m] 

: 
heat flux [w m- ‘1 
source vector, equation (7) 

si.j source term 
T temperature [K] 

T0 reference temperature [K] 
U dimensionless temperature, T/T, 
W emissivity ratio, ei/.sO 
X, Y dimensionless Cartesian coordinates, 

equation (5) 
x, y Cartesian coordinates [m] 

x0 reference length [ml. 

Greek symbols 
solar absorptivity 

: thickness of the plate [m] 
& infra-red emissivity 

solar angle 

F dimensionless profile factor, K,xz Tz/kh 

i 
Stefan-Boltzmann constant [w m- ’ K- ‘1 
dimensionless heat flux, qxz/kST,, 

rj dimensionless environment factor, 

K,IK2 T: 
w, relaxation parameter, equation (11) 
w, relaxation parameter, equation (9). 

Superscript 
* guess value. 

Subscripts 
i inside 
0 outside 

P present. 

Uniform heat flux, q 

qVod,, to ambient at 

Q rl)d,0 to vacuum space at OK 

All edges are insulated 

FIG. 1, Schematic diagram of the radiating plate. 

where Heat application zone 

K, = mi, K2 = UE, and K, = Z a sin 8. 

Boundary conditions 
g+g+$-r(o’-+) =o. (34 

aT 
ax=O atx=Oandl 

ar 
-=0 aty=Oandb. 
ay 

(2a) 
Remaining zone 

g+g-5[(1+ 

(2b) 
Boundary conditions 

The non-linear elliptic problem defined by equations 
(1) and (2), is now given in dimensionless form. 

au 
-_=() 
ax 

W)U4- WU,*-$1 = 0. (3b) 

atX=OandL (da) 
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where 

i3u 
ar=O atY=OandB 

and 

3. NUMERICAL SOLUTION 

(4b) 

(5) 

The solution to the problem described by equations 
(3) and (4) is susceptible to treatment by various 
numerical techniques. The boundary integral equa- 
tion and series truncation method is used by some 
investigators [12]. An implicit finite difference scheme 
is used in the present investigation to write equation 
(3) in the well-known five-point difference equation 
as 

a,, u,,j- I + b;, ui- I ,I + C,, ui.i + 4, U;+ I .j 

+ eij Ui,,+ I = si., . (6) 

The difference equation (6) is expressed in matrix form 
as 

AU=S (7) 

where A represents ai, to e,,, U, all U,,‘s and S, all Q’S, 
Due to the limitations of the normally used Jacobi 

iterative, Gauss-Seidel iterative, successive over relax- 
ation and the AD1 methods in solving the large non- 
linear set of equations obtained here the strongly 
implicit procedure of Stone [ 131 is used in the present 
investigation. The principal advantage is the faster 
convergence rate of this compared to the other pre- 
viously mentioned methods. 

3.1. The strongly implicit procedure (SIP) 
A general iterative formula for equation (6) is 

obtained by adding an auxiliary term A” to each side 
of equation (7) and setting the iteration number to U 
as 

[A+A”]{U}“+’ = [A](U)“+(S) (8) 

where n is the number of iterations and the form of 
[A”] is such that ][A”]] << [[A]1 and the decomposition 
of [A + A”] into a lower and an upper triangular matrix 
product involves much less computation than the 
direct decomposition of [A]. Factorization of [A + A] 
into [L] + [U] or [L] + [B], where [L], [U] and [B] 
are respectively lower, upper and diagonal matrix, 
reduces the method to point Jacobi iterative and 
Gauss-Seidel schemes. respectively. In the SIP 
method however, [A +A”] is factorized as [L] - [U]. 
Since the right-hand side of equation (8) involves the 

unknown solution vector { U}, the following iteration 
scheme of Stone [ 131 is used : 

[A+A”]{U}“+’ = [A+~l{~,n-~,([Al(U)“-(~)) 
(9) 

where w,? is the relaxation parameter. 

3.2. Source term linearization 
To avoid the steady drift or oscillation with increas- 

ing amplitude of the computed ‘U’ values the source 
term is linearized by splitting S as follows [ 141: 

where the superscript denotes the guess or previous 
iteration value. Also to accelerate the convergence 
rate a relaxation parameter is used for the source and 
the coefficient cij during the recalculation. Source term 
relaxation for example is written as 

sjj = w,si, + (1 - w,)s$ (11) 

The convergence criterion set for the U value is less 
than or equal to lo- ‘. The linearized source equations 
are solved repeatedly in an outer iterative cycle and 
the SIP method is evaluated in an inner cycle. 

3.3. Grid generation and treating irregular boundaries 
The given irregular shaped plate is approximated 

to a polygon and is considered in a positive coordinate 
system. A suitable rectangular grid is then super- 
imposed over the polygon. By making use of the direc- 
tion cosines of the directed line segments from the 
grid points they are designated as external, internal 
and boundary nodes. Depending on the type of nodes 
they are represented by a number. Based on the above 
procedure the number of grid points of the five point 
molecule difference representation which are outside 
the domain under consideration is determined. The 
method proposed by Fox as in ref. [15] is used to 
handle the derivative normal to the irregular bound- 
aries. A computer program is developed for the auto- 
matic generation of the grid and the details are pre- 
sented elsewhere [ 161. 

4. RESULTS AND DISCUSSION 

Two-dimensional temperature distribution in radi- 
ating plates is computed for different values of the 
relaxation parameters w, and 0,. The optimum values 
are 0.95 and 0.1, respectively. The consistency of the 
computer program developed is confirmed by check- 
ing the independency of the converged solution for 
different values of the initial guesses of temperature, 
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FIG. 2. Effects of heat flux parameter 4 on temperature. 

the relaxation factors, the reference temperature and 

coordinate axes values. The deviation in temperature 

value at the centre and the corner of a square plate 

radiating to space is found to be less than 0.25% when 

the grid size is quadrupled from 8 x 8 to 32 x 32. In 
most of the computations however, the minimum 
number of divisions considered along any of the axes 
is 16. 

Figure 2 shows the effect of the normalized heat 
flux parameter C#J on the variation of temperature with 
distance, where UC corresponds to the normalized 
centre temperature of the square radiating plate con- 
sidered. The range of C$ considered is 0.1-100. The 
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FIG. 4. Effects of environment parameter JI on temperature. 

temperature gradient and centre temperature 
increases with heat flux. Though the term kS appears 
both in 4 and 5, the figure shows the possible trend 
in the temperature distribution for changes in the 
material property. The term 5 is sometimes considered 
as the radiation Biot number. However, because of 
the appearance of terms k, 6 and To in both 4 and 5, 
it can be treated as an emissivity factor of the radiating 
surface. The temperature profile flattens and the ori- 
gin temperature reduces with an increase in 5 (Fig. 3). 

The environment parameter $ is the normalized sun 
load falling on the plate. At $ = 0 no sun load falls 
on the plate. The overall effect of the variation of $ 
on normalized temperature is small as shown in Fig. 
4. The radiating plate is interacting with vacuum space 
and ambient conditions on either sides excepting the 
heat footprint zone, where a uniform heat flux is 
applied. For a given area of the plate and heat load, 
the average temperature level of the plate can be 
reduced by effectively radiating from either sides of 
the plate. A measure of this is expressed as the emis- 

1.1 

1.0 1 I I I I 
0 0. I25 0.25 0.375 0.5 

FIG. 5. Effects of emissivity ratio Won temperature. FIG. 3. Effects of emissivity factor 5 on temperature. 
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a=0.2, t, =a, =0.8, 8=2mm 

0=5OW. ~=300K,I=0.14Wm-*~23.5~ 

Heat tootprlnt = 100 cmp 0 

Numaralr deripnatts temperature in K 

All dimensions in cm 

I 
I_ 

Fro 6. Isotherms in rectangular plate (effects of aspect ratio). 

sivity ratio W, and its effect on the temperature dis- 
tribution is shown in Fig. 5. At W = 0, no heat is 
radiated to the ambient conditions. The mean tem- 
perature of the plate increases with a reduction in W. 

Figure 6 depicts the isotherms in rectangular plates 
of equal area and different aspect ratios. A square 
heat footprint at the centre is considered in all the 
cases. The isotherms are circular except at the comers 

for a square plate. With the increase in the aspect 
ratio, the two-dimensional effect of temperature is 
predominant near the heat footprint area only. Also 
the maximum temperature at the origin increases with 
aspect ratio. The variation in the maximum tem- 
perature attained with change in footprint location is 
shown in Fig. 7. For a given heat load and radiating 
conditions a doubly symmetric location of the foot- 

All dimensions in cm 

I =O.l4W me’@ 239, E, =G, ~0.8, 0=0.2,Q=5OW. fi -300~ 

FIG. 7. Isotherms in rectangular plate (effects of heat footprint location). 
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FIG. 8. Plate thickness vs aspect ratio. 
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4.1. Design of radiating plates 
One of the primary objectives of thermal design is 

to maintain the temperature of the heat dissipating 
component at or below a specified value. If the shape 
of the plate and the heat footprint location is fixed, 
the above objective can be achieved by varying the 
thickness of the plate. This is generally done by a trial 
and error method. In the present investigation a one- 
dimensional search method is used for a quick esti- 
mation [16]. Figure 8 shows the thickness required for 
different aspect ratios. An increase in the maximum 
temperature attained with aspect ratio necessitates the 
increase in the thickness to contain the maximum 
temperature to a desired value. For values of aspect 
ratio greater than 6, the thickness required increases 
almost linearly. 

Figure 9 shows two grid sizes used and the iso- 
therms in an irregular hexagonal radiating plate with a 
centrally located square footprint area. The isotherms 
are circular at the centre and elongate to an elliptical 
shape in the body of the plate. A two-dimensional 
effect is seen throughout the plate area. The closer 
isotherms around the footprint area showing a larger 

I C 

Numerals designate temperature in K 
All dimensions in cm 

FIG. 9. Isotherms in an irregular hexagonal plate. 

print and the plate will attain the lowest temperature temperature gradient are further apart near the edge 
at the origin. From the point of view of temperature showing a larger temperature range. The percentage 
constraints, as experienced in heat dissipation in elec- difference in the temperature values at locations A, B 
tronic devices, the doubly symmetric con~guration is and C on the plate for the two grid sizes of 21 x 21 
best suited whenever possible. and 11 x 11 are 0.27,0.87 and 0.45, respectively. 
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FIG. 10. Isotherms in an irregular plate. 

1773 

i 
45 

1 

In practice it may be required to use an irregular 
shaped plate (from the viewpoint of mass mini- 
mization) with more than one heat footprint. Figure 
10 shows the isotherms in such a plate of size 5550 
cm’. The two heat footprint areas and load are 200, 
75 cm2 and 18, 150 W, respectively. The absorptivity, 
emissivity ratio of the external side facing the vacuum 
at 0 K is 0.2/0.8. The other side of the plate has an 
emissivity of 0.8 and radiates to an ambient condition 
at 300 K. As can be expected the isotherms which are 
closer near the high heat flux zone, spread out in the 
other region. Only one hot spot is observed due to the 
large difference in the applied heat flux values. 

5. CONCLUDING REMARKS 

The mathematical model presented in this paper 
leads to a better understanding of two-dimensional 
heat transfer in radiating plates. The effects of the 
non-dimensional parameters namely, the heat flux 
parameter, profile number, environmental parameter, 
emissivity ratio and aspect ratio upon the temper- 
ature distribution are studied. 

REFERENCES 

1. R. L. Chambers and E. V. Somers, Radiation fin 
efficiency for one dimensional heat flow in a circular fin, 
J. Heat Transfer 81,327-329 (1959). 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

J. G. Bartas and W. H. Sellers, Radiation fin effec- 
tiveness, J. Hear Transfer 82473-75 (1960). 
M. N. Schnurr, Radiation from an array of longitudinal 
fins of triangular profile, AZAA J. 13,691-693 (1975). 
R. G. Eslinger and B. T. F. Chung, Periodic heat transfer 
in radiating and convecting fins or fin arrays, AZAA J. 
17, 113b1140 (1979). 
K. Badari Narayana, S. Uma Kumari and H. N. Murthy, 
Analysis of circular tapering radiator plates, Proc. 8th 
In!. Heat Transfer Con$, San Francisco, Paper No. 
CO-17 (1986). 
E. M. Sparrow, K. Johnson and W. J. Minkowycz, Heat 
transfer from fin-tube radiators including longitudinal 
heat conduction and radiant interchange between longi- 
tudinally non-isothermal finite surfaces, NASA TND 
2077 (1963). 
N. D. Stockman, E. C. Bittner and E. L. Sprague, Com- 
parison of one and two dimensional heat transfer cal- 
culations in central fin-tube radiators, NASA TND 3645 
(1966). 
S. Sikka and M. Iqbal, Temperature distribution and 
effectiveness of a two dimensional radiating and con- 
vecting circular fin, AIAA J. 8, 101-106 (1970). 
M. Iqbal and B. D. Aggarwala, Temperature dis- 
tribution in a two dimensional rectangular solid in inter- 
planetary space, Proc. ASME Annual Aviation and Space 
Co& New York, pp. 625433 (1968). 
J. R. Moszynski and Nitin Champaneria, Two-dimen- 
sional temperature distributions in radiating fins, 1st 
National Heat Mass Transfer Conf., Madras, Paper No. 
HMT-36-71,1-13-I-20 (1971). 
R. P. Bobco and R. P. Starkovs, Rectangular thermal 
doublers of uniform thickness, AIAA J. 23, 1970-1977 
(1985). 
M. Manzoor, Heat Flow through Extended Surface Heat 



1774 K. BADARI NARAYANA and S. U. KUMARI 

Exchangers, Lecture Notes in Engineering. Springer. 15. Dale U. von Rosenberg, Methods for the Numerical 
Berlin (1984). Solution of Partial D@erential Equations. American 

13. H. L. Stone, Iterative solution of implicit approxi- Elsevier, New York (1969). 
mations of multi-dimensional partial differential equa- 16. K. Badari Narayana and S. Uma Kumari, Thermal 
tions, SIAM J. Numer. dnalysis 5,53&558 (1968). analysis and design of doublers, Dot. No. ISAC-32-86 

14. S. V. Patankar, Numerie~~~eat Transfer and Fluid Flow. 10-05-05, Mechanical Systems Group. ISRO Sateilite 
Hemisphere/McGraw-Hill. New York (1980). Centre, Bangalore 17, India (1986). 

ANALYSE DU TRANSFERT THERMIQUE BIDIMENSIONNEL DES PLAQUES 
RADIANTES 

R&arm&On utilise la procedure fortement implicite pour traiter la conduction de chaleur bidimensionnelle, 
non lintaire, elliptique dans des plaques radiantes. Un flux thermique uniforme est impost a une face de 
la plaque qui dissipe la chaleur par rayonnement dans le vide a 0 K et dans une ambiance a la temperature 

r. Les r&hats sont presentis i l’aide de quatre paramttres adimensionnels. 

UNTERSUCHUNG DES ZWEIDIMENSIONALEN WARMETRANSPORTES IN EINER 
WARMEABSTRAHLENDEN PLATTE 

Zusammenfaasung-Ein impiizites Verfahren wird zur Berechnung der nicht-linearen elliptischen zwei- 
dimensionalen W~~eleitung in einer w~~eabstrahlenden Platte verwendet. Der Platte wird ein gleich- 
mlgiger Wkmestrom aufgeprlgt. Die Warme wird auf der einen Seite der Platte in einen evakuierten 
Raum von 0 K abgestrahlt, auf der anderen Seite in eine Umgebung mit einer Temperatur T,. Die Ergebnisse 

werden in Form von vier dimensionslosen Parametern dargestellt. 

AlmoTa~~n peruewiR Henatiekioii 3JLQlmTWWXKOii LQByMepHOii 3aaaw TClUOllpOBOnHOCTm. ilJIn 

H3JI)‘YiWUItHX IIJIaCTEIH HClIOJlb3yeTCn HeSBHtJii MeTO& OAHOPOP;HbIiiTC~JlOBOti nOTOK IIOAaeTCII HaOAUH 

ICOHeIJ WKVZTHHbI,KOTOpaR pXUXBaeT T‘XJIO ii3Jly'IeHHeM C 0,QliOTO KOHIla B BaKflMe lIpH T= 0 ki B C 

npyroro Kotiua B oxpymahoutyw cpeny IIpH TeMnepaType 7;. Pe3yJIbTaTbl npeXTasneHbI c llOMOUtbK) 


